ON KURZWEIL-HENSTOCK-PETTIS AND KURZWEIL-HENSTOCK INTEGRALS OF BANACH SPACE-VALUED FUNCTIONS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Henstock–Kurzweil delta and nabla integrals

We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.

متن کامل

Henstock–Kurzweil Fourier transforms

The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...

متن کامل

Retarded Functional Differential Equations in Banach Spaces and Henstock-kurzweil-pettis Integrals

We prove an existence theorem for the equation x = f(t, xt), x(Θ) = φ(Θ), where xt(Θ) = x(t + Θ), for −r ≤ Θ < 0, t ∈ Ia, Ia = [0, a], a ∈ R+ in a Banach space, using the Henstock-KurzweilPettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose tha...

متن کامل

Henstock-Kurzweil Integral Transforms

Copyright q 2012 Salvador Sánchez-Perales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We show conditions for the existence, continuity, and differentiability of functions defined by ΓΓs ∞ −∞ ftgt, sdt, where f is a func...

متن کامل

Volterra Integral Inclusions via Henstock-kurzweil-pettis Integral

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2010

ISSN: 1027-5487

DOI: 10.11650/twjm/1500405736